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Abstract

Many difficulties are encountered when developing an in-
struction scheduler to produce efficacious code for multiple
architectures. Heuristic-based methods were found to pro-
duce disappointing results; indeed the goals of validity and
length compete. This lead to the introduction of another
method to search the solution space of valid schedules: ge-
netic algorithms. Their application to this domain proved
fruitful.

1 Introduction

This paper discusses some of the breadth of the work reported
in depth in [Bea91]. Parts of the verbiage are common. It
also extends the information contained in [BWJ90]

Instruction scheduling involves choosing, from the large
solution set of possible concurrent instructions, one pack-
ing that hopefully reduces both the execution time and the
space of the program. The solution space may be viewed
as an incomplete n-dimensional hypercube, where n is the
number of operations to be performed. Each operation can
be executed at a variety of locations in the code, and each
dimension represents the range of instructions that operation
can be placed.

Most existing instruction scheduling methods rely on
heuristics to remove the examination of parts of the search
space that appear fruitless. Using heuristics can be difficult
when attempting to arrive at an efficient yet efficacious com-
pactor. This difficulty is compounded by several factors. The
heuristics generally must be regenerated for each machine
targeted. The heuristics themselves are not in a form easily
understood by humans, thus making it difficult for humans to
correctly guess and modify a compactor’s behavior. It is also
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possible that the heuristics do not address an issue that has
great import on the final code. Heuristics that work well for
one ordering of MOs may not work well for another. Heuris-
tics are also picked before the execution of the instruction
scheduling routine and remain static throughout. They have
no ability to learn from previous runs or to take advantage of
anomalous situations existing in specific instruction schedul-
ing situations that lead to shorter code sequences. It would
be desirable to use a search technique that does not involve
heuristics yet provided a robust and efficient examination of
the problem space.

1.1 DDDs and Orders

The instruction scheduling problem is often represented using
data dependence dags (DDDs.) Nodes in the DDD contain
information about the operations that must be performed;
the edges constrain the order of execution. Edges provide a
partial order on the nodes such that an edge between nodes
specifies when nodes can execute relative to each other.

Given a partially ordered dag, a question that arises is
determining the total orders consistent with the partial order.
That is, to embed the partial order in a linear order, i.e., to
arrange the objects into a linear sequence a1; a2; : : : ; an such
that whenever aj � ak we have j < k [Knu73]. A method
for producing this result is called a topological sort. Hecht
[Hec77] gives an algorithm for topologically sorting a dag.

A desirable property of the topological sort algorithm is
that the operation is possible for every partial ordering. This
means it will always produce a total order, of the possibly
many available, given a partial order. Topological sorting is
one method of creating total orders from partial orders, but
certainly not the only method.

The number of edges in a dag are a concern because it
limits the number of different possible total orders. A lower
and upper bound can be calculated to demonstrate this. In
a completely inter-connected dag, the number of different
possible orderings is
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The level of a node in a dag is defined to be length of the
longest path from the roots to the node. This formula can be
derived by observing that all nodes at level l must be chosen
before any nodes in level l + 1. The number of different
orderings at any level is the number of permutations for the
nodes at that level. This results in a lower bound for a dag.
The upper bound may be calculated by using a completely
unconnected graph. The function is then simply

(D(N;E)) = N !

This is simply the number of permutations of all the nodes.
This is the upper bound for a dag and represents the ultimate in
flexibility. As the number of orderings increase, the number
of different final schedules increase, allowing a scheduler
more opportunities to create good schedules. A difficulty
with reducing the number of edges is the resultant increase
in the size of the search space.

Recent work by Brightwell and Winkler [BW90] has
shown that determining the actual number of total orders
in a dag, given a partial ordering, is #P–complete. That is,
as Garey and Johnson state [GJ79], the problem is at least
as hard as finding all the Hamiltonian circuits that exist in
a graph. #P–complete enumeration problems are thought to
be “harder” than their corresponding NP–complete existence
problems. For example, if P=NP, and it could be shown in
polynomial time that an arbitrary graph contains a Hamil-
tonian circuit, it is not apparent that this would provide a
polynomial time method of knowing how many Hamiltonian
circuits exist.

2 Genetic Algorithms

Realistic scheduling problems are difficult to represent using
traditional mathematical techniques. As a result, more tradi-
tional optimization methods are difficult to apply. GAs are
capable of searching ill-structured spaces and also provide a
global method of search [Gol89, Hol75].

Genetic algorithms have been recently applied to three ar-
eas of interest with good result: the traveling salesperson
problem (TSP), job-shop scheduling, and flow shop schedul-
ing [WSF89, WSS90, CS89, SMM+91, Sys90]. High quality
solutions have been found for each of these problems. The
results are not based upon heuristics or local optimization
information. As is common with GAs, a method of ranking
the current population is required. In these problems, this is
a simple task of summation to find the length of each mem-
ber of the population. This task is, if anything, easier for
instruction scheduling because the length of scheduled code
is trivial to find.

The encouraging results from the similar problems drove
the use of GA’s for instruction scheduling. With the increas-
ing complexity that expressing parallelism in both the source
code and in the architecture places on scheduling, and the

concomitant increase in the importance of producing good
code, previous methods were found too weak. The search
space is certainly discontinuous, with good schedules adja-
cent to bad ones, so that methods of local improvement (such
as hill-climbing) cannot be relied upon to find globally com-
petitive solutions. Another important feature provided by the
removal of local methods is the time reduction realized by
not performing the analyses required to drive these methods.
In the case of instruction scheduling, the need to analyze the
DDD and produce the metrics the heuristics use is obviated.
Finally, the time taken by genetic algorithms can be directly
controlled. The time taken by other global search methods,
such as exhaustive search, cannot be.

A distinction before some specifics. In Coffman [Cof76]
the problem of scheduling is stated as that of placing tasks
with precedence constraints on processors for execution. The
precedence constraints must not be violated by the scheduler.
Given a method of placing tasks in a schedule that ensures
validity, the problem may be changed into one of sequencing.
Sequencing specifies the order tasks are scheduled; another
method generates the schedule based on that order.

2.1 Methodology

To use genetic algorithms for a particular problem domain,
only a few ancillary functions must be defined. One of these is
an evaluation function that ranks the fitness of a string from
the population. Choosing a proper function, i.e., one that
represents a string’s relative worth in the population without
inordinate bias, is important. For instruction scheduling, a
minimization problem, the result of the evaluation function
must reflect the length of the final schedule that a member of
the population generates. A difficulty encountered is that not
all strings will produce valid final schedules. Failures will
occur when a conflict arises (i.e. timing, resource, or field)
due to a string’s ordering. It is not surprising that certain
orders will fail to produce valid schedules for any given DDD;
in fact, the impact of ordering on the production of valid
schedules is emphasised in previous methods of instruction
scheduling.

One possible solution is to give failing strings some prede-
termined “bad” (large) value. Difficulties with this method
include

� all failing strings will be given the same value, no matter
how close they got to producing a valid schedule, and

� the evaluation function will produce undesirable bias
among the poorly performing strings, i.e., they will all
appear equivalent.

This will interfere with the natural selection process of the
genetic algorithm because actual performance is not reflected
by the evaluation function. After consideration, the method
selected performs a “worst-case” evaluation when a string



fails to produce a valid schedule. This evaluation is produced
by assuming all unscheduled operations have no parallelism
available in them, necessitating their serial placement. The
calculation of the evaluation function is then trivial; it is
the number of instructions that contain operations so far,
plus the length of the path containing the serial ordering
of all the unscheduled operations. This produces a good
estimate in the event of schedule failure; those schedules
with more operations placed will receive a better evaluation.
It also produces an exact evaluation in the presence of a valid
schedule.

Six different recombination operators were studied. These
are described in Starkweather et al. [SMM+91] and in-
clude two order crossovers, partially mapped crossover, cy-
cle crossover, position-based crossover, and edge recombi-
nation. Starkweather et al. demonstrate that each opera-
tor will perform differently for each given problem domain.
The performance difference can be measured in the speed
of convergence to a good solution. For example, edge re-
combination finds good solutions more rapidly on the TSP
while performing more poorly than the others on scheduling
problems.

The conditions for stopping search must be examined.
Halting is certainly predicated on finding one valid sched-
ule, a possibly non-trivial requirement. Because this require-
ment is present in all forms of instruction scheduling, it is
not viewed as a detriment to a GA-based approach. Another
condition for stopping can be the closeness to the theoretical
best for the DDD. On “easy” DDDs (with simple timings
and dependencies), the theoretical best can be achieved with
regularity. Therefore, this condition should be checked to
determine the credibility of continuing the search. Another
bound easily placed is the number of recombinations per-
formed. Time constraints certainly can be used to generate a
value for this bound, unfortunately, a direct relationship does
not exist between time spent and the quality of the resulting
schedule; an optimal schedule may be found in the first gen-
eration, or not found after innumerable generations. Such is
the case with all non-deterministic optimizers; unless a solu-
tion matches a known theoretical best, a stopping condition
cannot be reliably specified 1. Genetic algorithms will gener-
ate solutions competitive with all areas of the solution space
searched. Increasing the number of recombinations, and to a
lesser degree the population size, will tend to produce “more
optimal” solutions. This provides motivation to perform as
many recombinations as possible.

The number of generations should therefore be related
to the relative difficulty of producing an optimal schedule
for a given DDD. DDDs with few simple operations do not
require as many generations to find good schedules as do
those with many complex operations. Basing the number of

1Remember that theoretical best and optimal are not the same. The
former specifies the best without the presence of any additional constraints,
the latter considers those extra constraints.

generations on a low-order polynomial has proven effective.
The size of the population is based on a different lower-order
polynomial. The homogeneity of the population is an indirect
indicator of convergence. If all solutions are similar, either
a competitive solution has been found or unvisited areas of
the search space contain better answers. In the first case, the
search may be halted. In the second case, mutation should
be used to expand the area of the search space covered. It is
difficult to differentiate these two conditions.

Two genetic approaches to the instructionscheduling prob-
lem are outlined in the following sections. Both are based on
the manipulation of strings of non-repeating integers. This
representation is consistent with those used in the TSP and
shop scheduling problems previously mentioned. All pop-
ulations are randomly initialized. For each member of the
initial population, the evaluation function must be executed
in order to create a sorted gene pool.

It is possible to vary various parameters of a genetic al-
gorithm to increase its effectiveness on a particular problem
although no such effort was made in these studies. The se-
lection bias was 1.5. There was no mutation, adaptive or
otherwise. Each population was initialized with different
(random) values.

2.2 With List Scheduling

The first approach used a genetic algorithm in concert with
a list scheduler. Several immediate benefits accrued due to
this method:

1. the use of existing list scheduling technology (requiring
no additional scheduling code),

2. the use of an already-understood scheduling method,
and

3. the use of a method similar to both Syswerda’s job-shop
scheduling and Starkweather et al.’s brewery scheduling
approaches.

These benefits allowed comparisons to be made against ex-
isting results, both to verify the validity and efficacy of the
resultant schedules.

The strings in the population represented the priority or-
dering of the nodes in the DDD. As nodes in ROCKET’s 2

DDDs are numbered consecutively from 1 : : :n, where n is
the number of nodes, a node number at a given place in the
string has priority over all that appear later. This information
is used to pick which node, of all those possible in the data
ready list, will be placed next. This removes all heuristic
judgements based on node attributes.

Most of the schedules produced were valid. This is at-
tributed to the power of the implicit heuristic of list schedul-
ing, placing only data ready nodes. In the present im-
plementation, integrating the GENITOR genetic algorithm
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[WK88, Whi89, WS90] routines took less time than tuning
the list scheduling heuristics in order to achieve a high de-
gree of reliability in the production of valid schedules. Each
machine targeted requires the re-tuning of these heuristics,
replicating this time spent. Using a genetic algorithm, noth-
ing needs modification to target to another architecture. This
can greatly increase the flexibility of an instructionscheduler,
useful both for pre-production performance studies where ar-
chitectural features may be changed and their impact stud-
ied, and where the production of code for many disparate
machines is desired.

This combined list scheduling/genetic algorithm per-
formed well. In simple DDDs, it easily found solutions as
good as list scheduling alone. These were instances where
timing was flexible, and placement order was basically irrel-
evant. The combination also found some new best-known
solutions to difficult DDDs. While this may appear surpris-
ing, consider the great lengths required to generate a set of
heuristics that would usually produce valid schedules. The
heuristic with most impact on final schedule length, critical
path, has been shown to produce erroneous results in simple
cases. Other heuristics, such as counting the number of re-
stricted edges a node has, must be emphasised in an attempt
to assure schedule validity. The emphasis therefore shifts
(correctly) from the possibility of generating shorter sched-
ules to the probability of producing valid schedules. The use
of GAs tends to place nodes in an order that produces shorter
results, and with an evaluation function that reflects failure
as a longer result, it will place nodes in an order that also
produces valid results.

A detraction from these encouraging results is the time
complexity of the combined algorithm. As shown before,
list scheduling is at least O(n2), and repeatedly performing
this operation to evaluate a given string increases the time
complexity. If the number of generations is linear with re-
spect to the number of nodes in the DDD, the complexity
becomes O(n3). Increasing the population size also results
in similar complexity increases.

2.3 Without List Scheduling

The time complexity of the GA-based list scheduling method
motivated an exploration into other forms of scheduling. No
existing methods had less complexity and fit within the frame-
work developed. The goal became the placement of opera-
tions in less than O(n2) complexity. It was noticed that, with
the application of the absolute timing algorithm, each node
already “knew” approximately where in the final schedule it
must be placed. If the order of placement could be performed
intelligently, there was no reason for a top-down(list schedul-
ing) priority in node placement. Top-down priority had been
used as a pseudo-intelligent form of ordering; it cannot adapt
to vagaries of individual graphs. With genetic algorithms
an intelligent, adaptable method is present. The scheduling

mechanism therefore became using the GA to pick the order
operations are placed in the schedule. This works because
each operation “knows” where it can be placed. Certainly,
failures can occur due to choosing an improper order, creating
an invalid schedule.

To increase the likelihood of valid schedules, limited
lookahead scheduling is employed. Here, “limited” denotes
lookahead packing only those nodes with (op) = (n; n) ab-
solute timing. That is, only nodes with no choice in their
placement, due to the placement of another by the GA, are
scheduled. Nodes with (op) = (n;m) absolute timing are
ignored by lookahead. This retains the greatest amount of
flexibility and problem knowledge for the genetic algorithm
to work with. If the GA places nodes toward the end of the
DDD first, lookahead scheduling may do most of the work in
scheduling the DDD. This is not a detriment to the process
as it only properly reflects the affects of the GA choice of
node-placement order. As a by-product, this lookahead effort
decreases the time spent by the entire scheduling process, as
the GA is required to examine fewer nodes for placement.
Most of the time spent scheduling then resides in the absolute
timing and lookahead algorithms.

A difficulty with this method is the increased potential
of generating invalid schedules. As node placement order
is critical for success in creating a valid final schedule, the
original random generation of orders the genetic algorithm
provides tend to fail often. Several methods were tried to
increase the number of valid schedules generated:

1. increasing the number of generations,

2. increasing the population size, and

3. seeding the initial population with a known good or-
der. This order may be generated with another form of
scheduling.

All three of these methods produced an increase of valid
schedules for difficult-to-schedule DDDs. The first method
provides the genetic operator more diverse material upon
which to operate. The second enlarges the area of the search
space represented in the initial population. The third refines
an initially correct schedule while also searching for better
solutions.

Genetic operators emphasizing order converged faster than
those emphasizing adjacency. This comes as no surprise; all
previously effective methods also emphasized order. This
evidence does however shed additional light on the nature of
of the instruction scheduling process by providing more con-
trolled, empirical evidence. The ordering of the placement
of nodes by the genetic algorithm mirrors the approach used
by human coders. The nodes with the greatest impact on fi-
nal schedule length are placed first, with those having lesser
impact placed later. The order of placement that ensures
validity is also reflected.



By removing list scheduling, with its associated execution
time and FCFS ordering, more schedules can be generated in
a given amount of time. This provides for a more thorough
search of the problem space, given a similar amount of time.
Given the facts that the quality of the solutions generated is
likely enhanced, and schedule validity is assured, this ap-
proach bears more fruit than the combination of GAs and list
scheduling.

3 Summary

The desire for efficient and efficacious scheduling of instruc-
tions motivated an effort to understand the search space of
the problem. With a better understanding of the nature of the
problem, genetic algorithms were applied to more effectively
search the space of valid solutions. This application proved
to give excellent results. The lack of retargeting adds to the
scheduler’s usefulness in research (and quick-turn develop-
ment) settings. The ability to rapidly generate excellent code
by thorough search extends this usefulness to areas requiring
such code.
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